Schedule
- Today:
- Thursday:
- Dec 21:
- Dec 23:

Surface tension of water:

75 mN/m

- String: tension: force
- Volume: pressure
- Force/area

Surface of drop of water
drop of water
fog: $R \sim \mu m$"

heavy rain: $R \sim mm$

1. Energy
2. Calculus - differentials.

area: $4\pi R^2 = \frac{d}{dR} \left(\frac{4\pi}{3} R^3 \right)$

increase radius by $\Delta R \rightarrow$
increase area by ΔA
\[A = 4\pi R^2 \]
\[\frac{dA}{dR} = 8\pi R \]

\[\Delta A = 8\pi R \Delta R \]

\(\Delta A \) requires work b/c there is a surface tension \((\text{force/length})\) \(\sigma\)

\[\Delta W = \sigma \Delta A \]

\[\Delta W = T \Delta l \quad \Delta W = P \Delta V \]

\(\text{guitar string work intensive} \quad \text{work extensive}\)
Spheres have the smallest surface area-to-volume ratio.
what happens if we expand a drop of water by ΔR?
- Stretch surface: $\Delta W = \sigma \cdot \Delta A$
- "incompressible" the water

b water is incompressible
\Rightarrow not exactly true!
\Rightarrow approximation

\Rightarrow get work: $\Delta W = P \Delta V$

in equilibrium: $\sigma \Delta A = P \Delta V$